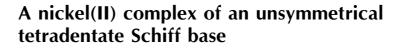
metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

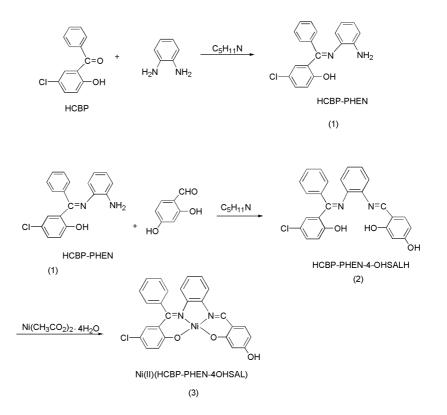
Bixue Zhu, Wenjuan Ruang and Zhiang Zhu*


Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: zazhu@nankai.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.053 wR factor = 0.129 Data-to-parameter ratio = 15.4


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The structure of the title nickel(II) complex, $(2-\{2-[\alpha-(5-chloro-2-oxidophenyl)benzylideneamino]phenyliminometh$ $yl}-5-hydroxyphenolato)nickel(II) methanol disolvate,$ [Ni(C₂₆H₁₇ClN₂O₃)]·2CH₃OH, containing an unsymmetricaltetradentate schiff base, comprises two neutral [Ni(CBP-PHEN-4-OHSAL)] complex molecules and four methanolsolvent molecules in the asymmetric unit. Each Ni^{II} centerexists in a four-coordinate square-planar geometry defined byan N₂O₂ donor set.

Comment

Transition metals occur in metalloenzymes, usually in a distorted coordination environment, bound to a macrocycle, such as a heme ring, or to donor atoms derived from peptide chains, as in hemerythrin (Fe₂) or hemocyanin (Cu₂) (Co *et al.*, 1981; Stenkamp *et al.*, 1981).

Unsymmetrical tetradentate Schiff base complexes are required to model the irregular binding of peptides (Atkins *et al.*, 1985). In this context, compound (1) (HCBP-PHEN; see scheme) was prepared from the condensation of 5-chloro-2hydroxybenzophenone (HCBP) and one of the amino groups of 1,2-diaminobenzene. The second amino group can then be reacted with a substituted salicylaldehyde (4-OHSALH) to

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 22 March 2004 Accepted 15 April 2004 Online 24 April 2004 form the unsymmetrical tetradentate Schiff base ligand (HCBP-PHEN-4OHSALH) (2). This can be reacted with nickel(II) acetate to form the title complex, (3).

The structure of (3) contains two independent mononuclear complex molecules and four solvent methanol molecules (see Fig. 1 and Table 1). Each Ni^{II} center has a slightly distorted square-planar geometry defined by two N and two O atoms. The Ni^{II} center deviates from the coordination plane by 0.0137 (1) and 0.0125 (1) Å for atoms Ni1 and Ni2, respectively. All Ni-donor atom bond distances are within the range expected for such bonds (Atkins et al., 1985). With the Ni^{II} atom, the coordinated ligand gives rise to one five- and two six-membered chelate rings. There is some deviation from planarity in the ligand as shown in the dihedral angle between the OCCCN fragments, 13.5 (2) (Ni1) and 14.1 (2) $^{\circ}$ (Ni2). This distortion results from the steric constraints within the ligand.

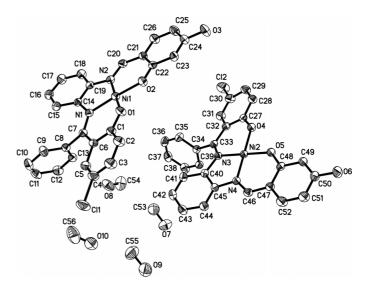
The molecular packing is controlled by hydrogen bonds and intermolecular π - π interactions. Thus, O-H···O hydrogen bonds are formed between the OH group of solvent methanol molecules and the ligand-bound OH groups and coordinated O atoms so that there exist eight $O-H \cdots O$ hydrogen bonds, as listed in Table 2. Intermolecular π - π interactions exist between the phenyl rings of two complex molecules with a separation of approximately 3.68 Å between the centroids of the rings and the dihedral angle is approximately 11°.

Experimental

The title complex, (3), was synthesized in methanol solution as described earlier and indicated in the scheme (Atkins et al., 1985). Single crystals suitable for X-ray crystallography were obtained from an ethanol-CH₂Cl₂ mixture by slow evaporation at room temperature.

Crystal data

-	
[Ni($C_{26}H_{17}ClN_2O_3$)]·2CH ₄ O	Z = 4
$M_r = 563.66$	$D_x = 1.443 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 13.856 (10) Å	Cell parameters from 870
b = 14.172 (10) Å	reflections
c = 15.863 (11) Å	$R = 20.25 \text{ m}^{\circ}$
c = 15.865 (11) A	$\theta = 3.0-25.9^{\circ}$
$\alpha = 95.181 (12)^{\circ}$	$\mu = 0.89 \text{ mm}^{-1}$
$\beta = 101.862 (12)^{\circ}$	T = 293 (2) K
$\gamma = 119.151 (11)^{\circ}$	Prism, yellow
$V = 2595 (3) \text{ Å}^{3}$	$0.34 \times 0.22 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	10432 independent reflections
diffractometer	6469 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\text{int}} = 0.026$
Absorption correction: multi-scan	$\theta_{\text{max}} = 26.4^{\circ}$
(<i>SADABS</i> ; Sheldrick, 1996)	$h = -17 \rightarrow 9$
$T_{\min} = 0.779, T_{\max} = 1$	$k = -15 \rightarrow 17$


Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.129$ S=1.0310432 reflections 677 parameters H-atom parameters constrained

14885 measured reflections

 $l = -17 \rightarrow 19$

 $w = 1/[\sigma^2(F_o^2) + (0.0498P)^2$ + 0.9807P] where $P = (F_{\alpha}^{2})^{2}$ $+ 2F_{2}^{2})/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.45$ e Å $\Delta \rho_{\min} = -0.34 \text{ e} \text{ Å}$

Figure 1

The molecular structure of (3). H atoms have been omitted for clarity and displacement ellipsoids are drawn at the 30% probability level.

Table 1

Selected geometric parameters (Å, °).

Ni1-O1	1.833 (3)	Ni2-O4	1.840 (3)
Ni1-O2	1.841 (3)	Ni2-O5	1.841 (3)
Ni1-N1	1.876 (3)	Ni2-N3	1.884 (3)
Ni1-N2	1.845 (3)	Ni2-N4	1.854 (3)
O1-Ni1-O2	82.80 (11)	O4-Ni2-O5	82.60 (11)
O1-Ni1-N1	95.33 (12)	04-Ni2-03	95.83 (12)
O1-Ni1-N2	174.72 (13)	O4-Ni2-N4	174.85 (13)
O2-Ni1-N1	176.63 (13)	O5-Ni2-N3	176.74 (12)
O2-Ni1-N2	94.50 (13)	O5-Ni2-N4	94.78 (12)
N1-Ni1-N2	87.59 (13)	N3-Ni2-N4	87.01 (13)

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3-H3···O7 ⁱ	0.82	1.82	2.638 (5)	173
$O6-H6\cdots O8^{ii}$	0.82	1.86	2.661 (5)	167
O7−H7···O1 ⁱⁱⁱ	0.82	1.96	2.773 (4)	169
O7−H7···O2 ⁱⁱⁱ	0.82	2.53	3.051 (5)	123
$O8-H8\cdots O4^{i}$	0.82	2.06	2.856 (4)	165
$O8-H8\cdots O5^{i}$	0.82	2.52	3.092 (5)	128
O9−H9a···O3 ⁱ	0.82	2.13	2.927 (5)	164
$O10-H10a\cdots O6^{iv}$	0.82	1.98	2.789 (5)	168

x, y, z - 1.

C-bound H atoms were included in the riding-model approximation, with C-H distances of 0.93 Å (0.96 Å for methyl groups), and $U_{\rm iso}({\rm aromatic H}) = 1.2U_{\rm eq}({\rm C})$ and $U_{\rm iso}({\rm methyl H}) = 1.5U_{\rm eq}({\rm C})$. The hydroxy H atoms were located in a difference map and refined with O-H distances fixed at 0.82 Å and $U_{iso} = 1.5U_{eq}(O)$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors are grateful for financial support from the National Science Foundation of China (grant No. 20171024).

References

- Atkins, R., Brewer, G., Kokot, E., Mockler, G. M. & Sinn, E. (1985). *Inorg. Chem.* 24, 127–134.
- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). *SAINT* (Version 4.0) and *SMART* (version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Co, M. S., Hodgson, K. O., Eccles, T. K. & Lontie, R. J. (1981). J. Am. Chem. Soc. 103, 984–986.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stenkamp, R. E., Siecker, L. C., Jensen, L. H. & Saunders-Loehr, J. (1981). *Nature (London)*, **291**, 263–264.